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Model for the generation of toroidal and poloidal magnetic fields in a laser-produced plasma
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A mechanism of simultaneous generation of toroidal and poloidal magnetic fields in an underdense region of
a laser-produced plasma is discussed. The mechanism relies on the fact that at least a part of the incident
transverse mode of the laser field undergoes a linear conversion into a longitudinal mode in the thermal plasma.
It involves the conversion of ordered kinetic motion of the charged particles in the presence of the field into the
energy of the induced magnetic fields both in poloidal and toroidal directions. The analysis is based on
obtaining perturbative solutions of the two-fluid model of a hot nondissipative plasma. Our numerical results
show that both the toroidal and poloidal fields increase with the laser intensity, and that the former dominates
over the latter. Further, the toroidal fields decrease with increasing pulse lengths and increase rather slowly
with an increase in laser wavelengths. However, the poloidal fields seem to be insensitive to the laser pulse
lengths but they increase exponentially with the laser wavelengths. Finally, toroidal fields have a tendency to
decrease as the critical surface is approached. The poloidal fields show a contrary behavior.

DOI: 10.1103/PhysReVE.63.016404 PACS nuni®er 52.38-r

[. INTRODUCTION It is shown that ion motion contributes substantially to the
toroidal fields whereas the poloidal fields due to ions are
The generation of spontaneous magnetic fields in a lasenearly of the same order in magnitude and behave in the
produced plasma is under continuous research because @®pposite direction to that of electrons.
their importance in pellet design in inertial confinement fu- The paper is organized as follows. In Sec. Il the basic
sion (ICF). Various mechanisms have been proposed for théormulation of the problem is presented. In the same section
generation of large and small scale toroidal magnetic field§he expressions for the nonlinear velocities of electrons and
in laser produced plasmd4—13. Sources of large scale ions are derived, and also the components of nonlinear an-
toroidal magnetic fields are the thermoelectric procefsps ~gular momentunirequired for estimating the magnitude of
the radiation processég,3], the rippled surface irregularities toroidal and poloidal magnetic fieldare evaluated. In Sec.
[4], the nonuniformities in laser intensity, and hot electron!!l the numerical results are explained graphically. Finally, in
ejection from the focal spdi5,6] on one hand whereas, on Sec. IV, some concluding remarks and a brief discussion are
the other hand, filamentatiof7,8], resonance absorption added to point out the importance of the simultaneous gen-
[9-11], and the Weibel instability12,13 are the sources of e€ration of poloidal and toroidal fields in implosion physics
small scale toroidal magnetic fields. In fact, the sources ofnd also on spheromak. Some important derivations and the
large or small scale poloidal magnetic fields are not properlyyeason for exclusion of Landau damping effect are presented
understood yet. But, poloidal magnetic fields in thein Appendixes A and B, respectively.
megagauss range are produced through the dynamo effect
[14], ion-acoustic turbulencfl5,16, and the induced mag- Il. FORMULATION OF THE PROBLEM
netization arising out of the nonlinear optical response in
plasmas[17-21]. Moreover, the gigagauss range poloidal
magnetic field is produced through the ponderomotive force The plasma is assumed to be a hot two-component fluid.
[22]. The various theoretical and experimental processes ofhermal velocities of electrons {,.) and ions ¢,) are im-
the generation of toroidal and poloidal magnetic fields inportant in our analysis. For simplicity, the electron tempera-
laser-produced plasmas have been revief28 The effects  ture T, is taken to be equal to ion temperatufg (i.e., T
of those fields on energy transport in ICF research have alsg T;=T) and it is assumed that there is no temperature gra-
been studied by many authof84-29. So far, from the dient (VT=0). Hence, the magnetic fields due to thermo-
available literature it appears that the generation of eitheelectric effect[1] are ignored. We treat the plasma as non-
toroidal or poloidal magnetic fields has been reported sepalissipative by assuming thai{w)<1 wherev andw are the
rately with supporting mechanisms. Recer{tBp], a model collision and laser frequencies, respectively. Also assuming
for the simultaneous generation of toroidal and poloidalthat the width of a resonance lay&k[ = (v/w)L, whereL is
magnetic fields by the interaction of an intense laser beam ithe density scale lengthis small compared with the laser
an electron plasma has been discussed. In a realistic situaravelength §;s). So, the phenomena occuring at the reso-
tion, the ion motion cannot be ignored. The present papenance layer can be neglectg’l]. Moreover, the inhomoge-
treats ion motion and its consequence effects. For a bettereity due to Landau damping has also been ignored because
understanding of the physics of magnetic-field generation int is assumed that the electromagnetic wave numkey (s
laser plasmas, various results are elucidated here graphicalljmuch greater than the electrostatic wave numikgy [31].

A. Basic assumptions and the relevant equations
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Further assuming that the thermal velocities of electronsvhere P, P;, and kg are the electron pressure, the ion

(vine) @nd ions ;) are small compared with the phase pressure, and the Boltzmann constant, respectively.

velocity (v,) of the radiation field, and also that the Debye  The above set of equatiori$)—(10) are to be solved by

length (\p) is much less than the density scale lendthof  the successive approximation schef36€]. In this scheme,

the plasma then the effect of plasma inhomogeneity may bany variabled is to be written as

neglected 32]. The very long density scale length %\ g

>\p) and uniform temperature¥(T=0) of the plasma in- P=Dy+ed;+e’Py+e3bg+---, (13)

dicate that the most beam energy are absorbed in the under- )

dense plasma. The intensities of the incident waves are a¥here ®o represents the value in the unperturbed state or

sumed to lie below the threshold value for the generation ofero-order solution o, @, the first order or the usual linear

inhomogeneities which gives rise to the self-action effectssolution, while ®,, is the nth-order approximatiorfor n

such as self-focussing, self-trapping, and self-phase modula 1,.2,3,.). In principle the parametes is a mathematical

tion [33]. The intrinsic nonlinear instabilities due to SRS artifice [36,37 that allows us to compare the degree of ap-

(stimulated Raman scatteringnd SBS(stimulated Brillouin ~ Proximation in a convenient way. In our case, howevdras

scattering are also being neglectd®2,33. In the present & natural physical meaning of being the ratio of the electrons

formulation, we consider only Kerr-type nonlineari§4,35  quiver speed f,s) to the speed of light(c). Nonlinearly

and hence a simple perturbation schei®@] is used for all excited third-order fields are to be solved in a closed form in

calculations. which the first harmonic solutions are to be considered from
To describe the interaction of laser fields with hot plasmatheir higher-order field$37,38.

we consider the macroscopic behavior of the two-component

plasma consisting of electrons and ions. So, the equations of B. First-order fields and solutions

continuity and momentum together with the usual Maxwell’s

. . Let us assume that the linearized electric field in a hot
equations can be written as

plasma has the forfB0]

Ne+ V- (Nefe) =0, @ E,=(Mcw/2e)[Ra €1+ (§a, —i128, )6 ]+c.c.,
_ (12)
N;i+V-(N;ij)=0, 2 .
wherea, (=ea, /IMcw), B, (=eb, /IMcw) are the dimen-
sionless amplitudes of the transverse electric field
=0, (3 (=ae/Mcw) is that of longitudinal fieldp, =k, x— wt and
0,=kx— ot are two phaseg, andk; are the transverse and
vp the longitudinal wave numbers, respectively,is the fre-
'r'i+('ri-V)h—£E—i(hXH)Jr—i:O, (4) quency of the waveM[=mem;/(me+m;)] is the mean
|

© (F.xH)+ VP
mec(re ) mMeNe

e
Fot (e V)igt —E+
me

m;c m;N; mass.X, ¥, andz are the unit vectors along the three mutu-
. ally perpendicular directions and c.c. represents the complex
H conjugate. In Eq(12), the last two terms in the third bracket
VXE=— (E) ' ) arise directly from the laser fields while the first component

arises from the converted modid1]. The justifications for
using the form of the linearized electric field of E§2) are

E\ 4me ; ; ; ;
VxH=|—|+ (N — Ngt o), 6) explal_ned in Sec: IV and also_m Appendlx B._
c c Using Eqg.(12) in the set of linearized equatiois)—(10),
we have the linearized velocities of electrons and ions as
V-E=4me(N;—Ng), (7) _ .
Fe1=1(MqC/2)[DgXe €' %I+ Deo(Ja, —i28,)€' % ]+c.c.
V-H=0, (8) (13
and

whereE, H, Ng, N, fe, i, me, andm; are the electric
field, the magnetic field, the electron density, the ion density, . _ . o _if oy i0
the electron velocity, the ion velocity, the electron mass, the Fir=1(M;c/2)[Di1X€"1+Dip(Ya, —i2B, )e L]+C.?.1’4)
ion mass, respectively and all other symbols have their usual
meanings. where

In order to complete the above set of equations, one needs
to specify the equation of state for ions and electrons. ForDelzl_ViZGenH/ZMi! Dez=(nf—1)/X, M=M/m,,
isothermal processes, the equations of state for electrons and
ions are and

Pe=NekgTe, ©) D;;=1-V2Gin/2M,, D;»=Dg, M;=M/m;.
P;=N;kgT;, (10)  The linearized densities of electrons and ions are
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Ne1=i(Ng/2)[Gea €' ’I—c.cl], (15)
Ni1=i(No/2)[Gjee'1—c.cl, (16)
where
Ge=[2(X~1)+V2nfl[n (Vi -V3)],
and

Gi=[2(X=1)+Vinfl/[n(Vi=VQ)].
Also the linearized magnetic field is

H,=(Mcw/2e)[(iyB, +2a,)n, e J+cc. (17)

C. Preliminary analysis

Using Eq.(12) in the linearized equation&l)—(10), we
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and also

Py =XG,[(V?n?/2)—1][(Van{/2)—1]

+(XIH[(VENZI2) = 1] 7+ (XID[(VENZ12) — 1] 74,
Q=4[ (VZn2/2)— 1][(Van$/2) — 1]+ X[ (VinZ/2) — 1]

+ X (V2ni/2)—1],
Py =—(XIAL(Van?)— 1] 7, +(XIA[(VIn2/2) — 1] e, ,
Qu, =4[(VPn?/2) = 1][(Veni/2) = 1]+ X[ (VEn?/2) 1]

+Xe[(Vin?/2)—-1],

P1=XG, Q;=(nj+n,)2—4+X+X,

Glz%(MiGeDe"'MeGiDi): G:%(MiGe+ MeGi),

have the linearized dispersion relation for transverse waves

as
n?—1xX,=0, (18)
where
ni=k clo, Xo=Xi+Xe, Xe=wiJo? X=wilw?
wge=47TN062/me, a)gi:47TN062/mi,
and that for longitudinal waves as
[(Vnf2) = 1][(Van{/2) = 1]+ X[ (Vanf/2) - 1]
+XJ(V2n#2)—1]=0, (19

where  n=kc/w, VZ=yp3 Jc?, VZ=yp3,/c?,

Utzhe: 2kT0/me, Utzhi = 2T0/mi .
The above two linear dispersion relatio(8) and (19)

are not coupled. So, the exchange of energy between trans-
verse and longitudinal waves at the time of their propagation
in the plasma is not possible in the linear case. It is also clear

_ 204 2 2
7g= 0eNy+GDVEMeny, 7o, =Mgn,

T=ointGDVIMNG, 7 =M?n,,
0e=M2D?—V2G?%2, o;=M?D2—V?G2/2.
The expression of the second-order magnetic fiéjds

H,=—(Mco/2e)[ (8, —iz2a,)éa et ]+c.c.
(21)

Also the velocities of electrong {,) and of ions (;,) are the
forms

Fep=(CI2)/{X[ e+ 7, (o — B7)€2 "]
+(Ja, —izp e W+, 22)
fio=(c/2){R[ Gjafe” "+, (af - BT)e "]
+{(a, —i2p e Wytee, (23

where

that the dispersion relations for both the waves are indepen-

dent of their wave amplitudes. Moreover, the linearized dis- , —_1p
. . , 7= 3(Pe /Qq)),
persion relation(18) for the transverse component is free

an%(PeL 1Q1,), UZ%(Pe/Q1)1

from thermal velocities of charged particles whereas the lonand

gitudinal dispersion relatiofl9) depends on thermal veloci-

ties of those particles.

D. Second-order fields and solutions

Using Eqgs.(12)—(16) in the second-order field equations
(1)—(10), the nonlinear excited second-order electric field

is obtained as
E,=i(Mcw/2e){8[ ¢ a’e? i+ & (a? — B?)e? ]
+E(§a, 128, ) ey W)+ c.c., (20)
where

§=—2(Py/Qq), & =—2(P1,/Qq), £=2(P1/Q1)

§=3(Py/Qu), & =3(PiL/Qu), ¢(=3(Pi/Qy),
and also
P.=—4X.G, P;=-4XG,
Pei=—{4[(Vin?/2)— 1]+ X} 7
+ X+ 4X[(V2NZ/2) - 1]G,,
Pe, = —{4[(V2n2/2)— 1]+ X} 7o, + XeTi
Piy=—{4[(VanZ/2)— 1]+ X} 7

+ Xi TeH + 4X|[(V§n|:|2/2) - 1]61 ’
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Pi=—{4[(V2n?/2)— 1]+ X} 7, + XiTer
The excited electron and ion densities are

Ney=(No/2)[ Sgyafe? i+ S, (af — B2)e? ]+ c.c.,

(24)
Ni2=(No/2)[Syjafe® i+ S, (af — B7)e” " ]+ c.c.,
(25
where
Sei=(m~MGiDi/2)n;, Se =mn.n.,
and
Si=(~{+MGD/N, S.=-Zun,.

It is evident that the linearized solutiorfgiven in Sec.

IIB) contain first-order harmonic terms. But the second-

order solutions(derived in this section contribute only

PHYSICAL REVIEW E 63 016404

Tau= =D (Fi1- V)Fio+(Fio- V)P — (6/M;c)(Fi1 X Hy)
—(eIM;c)(Fizx Hy) 1+ [ (v§i/2No) grad div(N; 17
+Nigfi1)]+ Dy(vii/2NG)[ — (NZ/No)grad divNi
+ N;, grad divN;; + N;; grad divN;,].

The terms in the square bracket Dfze are due to plasma
current for the electron and ion. The first two terms in the
first square bracket of \ g comes from the substantial de-
rivative of the electron momentum; the last two terms in the
same bracket represent the Lorentz force for electron. The
terms in the second square bracketTqfig are due to the
substantial derivative of the electron continuity equation. All
other terms in the last square brackeflf ¢ are due to the
pressure gradient of electrons. In a similar way, all the non-
linear terms ofT ., contained in the square brackets can be
explained due to ion motion in a plasma continuum.
Solving EQgs.(26), (27), and (28) by Cramer’s rule and
retaining only first-order harmonic terms, we have the fol-

second-order harmonic terms. Hence, in the absence of tH@W”’]g eXpreSSionS for the nonlinear Velocity of the electron
first-order harmonic terms the nonlinearly excited second{(fes):

order fields do not contribute a dc magnetic field. Moreover,
in our calculations, plasma inhomogeneity, field fluctuation,

Fe3=i(C/2){X[Ryjafe' i+ Ryl a® — B2) o201~

and collisional effects have been ignored. Thus, the second-
order solenoidal wave field does not generate a magnetic
field. Hence, the nonlinearly excited third-order field vari-

ables are to be explored for possible magnetic-field genera-

2 2 i ~ 2 i _
+Ryg(af +BT)ey€ ]+ J[Ryafar, €2 0

2 22 i 2
+Ryaf — BT) e, €+ Ryzaf v, €91]

tion by our mechanism.

E. Equations for third-order fields and their solutions

A 2 i — 2 2 i
—iZ[Rsa;] B €' @) 4 Ry ai—pB7)B.€ o

+RgzalB, €] +c.c. (29

From Egs.(1)—(10), we deduce the following three basic and that of the ioni(s3)

partial-differential equations of third order:

(c?V2—c?grad div— D?)E;— 4meNgD2ri3+4meNyDr g

=Tnee (26)
(e/mg)D{E5+D [ Df— (v/2)grad divir s = Ty,
(27)
and
—(e/m;)DE3+ D D2—(v3,/2)grad di\ﬂringNu,(ZB)

where Tyee: T, @and Ty, are the nonlinear third-order
terms. They have the following forms:

Trnee=4meD (Njafi2—Neifep) + (Njaf 1=~ Neofer) ],
Tae= —Dil(fer Vet (Fep V)ies
+(6/M¢C)(Yer X Hp) + (6/M¢C)(Fer X Hy)]
+[(v§e/2No)grad di( Nesf ep+ Neaf e1) ]
+Dy(v&/2N3)[ — (N2,/Ng)grad divN,
+Ng grad divNg; + Ng; grad divNg, ],

Fia=i(CI2{X[Ta’e' i+ T a® — B2) oy 20~
+ T4 af + Bf)auei f]+ )A/[T21a/||2alei(20”7 0,)
+Tolaf — B2)a €+ Tpgafa €]

—i Tyyaf BP0+ Tofa? — B7) B, €%

+TgalB e ]} +c.c., (30)
where values of alR's and T's are written in Appendix A.
Henceforth, the subscript 3 will be dropped from all the
third-order nonlinear terms. It is a fact that the nondissipative
plasma approximation demands the real values of wave num-
ber (k) and frequencyw) of the radiation fields which en-
trusts to avoid field fluctuations and collisional effects in our
calculations.

F. Nonlinear angular momentum and magnetization
The total nonlinear magnetic moments for electrons and
ions turn out as

= pet 1, (31)

where u, and y; are the nonlinear electronic and ionic mag-
netic moments, respectively, and can be expressed as
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Me=(reXje)/2c  and pi=(r;ixj;)/2c, (32 7

wherej, andj; are the nonlinear current vectors due to elec-
trons and ions, respectively. The expressiong. @ndj; are
given by

je=—€f, andj;=er;. (33

[~}
T

The nonlinear electron and ion velocities and r; are
given in Egs.(29) and(30), respectively, and their displace-
mentsr, andr; are defined in EQ4A1) and(A2). The non-
linear angular momentum for two-component plasmas is
given by

LoglO M; (Gauss)

L=(2c/e)(pi— pe). (34)
S $ 1 1 |

So, the nonlinear induced magnetization in laser plasmas, . 9© oz o4 06 o8 o
. . N/ Ng —
averaged over the fast laser frequency time s@ale 27/w)
can be expressed as

(M)=(4meNo/C) (i) —(me)) =(Mi) +(Me), (39

where(M.) and(M;) are the averaged induced magnetiza-
tion for electrons and ions, respectively.

The total averaged induced poloidal magnetic fields for
electrons and ions in thedirection(i.e., the direction of the
wave propagation or, in other words, the direction of the
laser beamcan be expressed as

Mp:(<Mex>+<Mix>)- (36)

The resultant of botly andz components of induced mag-
netization for electrons and ions turns out to be the total
toroidal magnetic fields. It will be in a plane perpendicular to

. . . . 0 1 1 ] 1
the direction of laser beams. The resultant toroidal magnetic 00 02 o 06 o8 0
field can be expressed as (b) N/Ng —»

Logm\“lp (Gauss) —

Mt:[(<Miy>)2+(<Miz>)2+(<Mey>)2+(<Mez>)2]- FIG. 1. (a) Variation of the logarithmic values of the toroidal
37 magnetic fields in gauss (lggM;) with the density ratio I/N,;) at

7=5ns,\=1.06um, | = 10 W/cn?. (b) Variation of the logarith-

mic values of the poloidal magnetic fields in gauss {}dd,) with

lll. GRAPHICAL ILLUSTRATION ON the density ratio KI/N;) at 7=5 ns,A=1.06um, | =10 W/cn?.

NUMERICAL RESULTS

The numerical estimations of both the toroidal and poloi-of the poloidal fields is near the critical density, which is yet
dal magnetic fields have been made for the Nd-glass las&o be verified either by experiment or by simulation. The
with wavelengths inum, pulse lengths in ns, and intensities magnitudes of toroidal and poloidal fields are different in
in W/cn?. The thermal power flux is 5(1/Z)(NkgT) different plasma expansion regions. So, their Larmor radius
X (AR/7) Wic?, whereZ, kgT, 7, N, andR are the effec-  effects on the rate of energy deposition in conduction regions
tive ionic charge number, the plasma temperature in eV, thevould be different and hence, the effect of energy transport
laser pulse lengths in ns, the density in cinand the spot  from a critical surface to an ablation surface is not uniform.
radiusR in um, respectively. The region of our interest hasMore studies are needed of energy transport for such fields.
been assumed to be composed of slabs, and the l&Rbf  Figure 2a) shows that the toroidal field decreases with in-
each slab is so chosen such that the temperature in that slabeasing pulse length but the poloidal field has no change as
is fairly constant and the mean value of the density can reashown in Fig. 2b). Figures 8a) and 3b) show that magnetic
sonably be taken. The induced magnetic fields have bediields will increase with increasing laser intensities. These
calculated on the basis of those values of temperature an@sults agree with earlier resulf4,2,4,5,11,14,16,17,19
density. Numerical results show that the induced toroidaFigure 4a) points out that toroidal fields increase very
magnetic field is not maximum at the critical density but well slowly with an increase in the wavelength, but poloidal fields
below it as in Fig. 1a). These results are consistent with the increase exponentially as shown in Figb¥ A rough sketch
experimental result$5] and numerically computed results in Fig. 5 shows the region of the underdense plasma where
[39]. But, Fig. 1b) tells us that the position of the peak value our model for the generation of magnetic fields may be valid.
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FIG. 2. (a) The variation of the logarithmic values of the toroi- ( log,p (W/ cm*)

dal magnetic fields in gauss (lggV;) with the pulse lengtltir) in L — .
ns at (/N =0.3, \=1.06m, | =10 Wi/cn?. (b) Variation of FIG. 3. (a) Variation of the logarithmic values of the toroidal

the logarithmic values of the poloidal magnetic fields in gaussmagnetIC fields in gauss (lggM,) with the logarithmic laser

(logioM;) with the pulse length(7) in ns at (N/N;)=0.3, A intensity (1) in Wien? at 7=5ns, N/NJ=03, X

= 105 =1.06um. (b) Variation of the logarithmic values of the poloidal
1.06um, | =10"*Wicnt. magnetic fields in gauss (lggM,) with the logarithmic laser in-

It is better to point out here that out of 98w density scale ©NSIY(1) in Wien? at 7=5 ns, N/N)=0.3,1=1.06um.

length the thickness of the resonance layer is of the order of

1 um and the length of influence of Landau damping isscale our results do not show any qualitative change because

approximately 24um. Hence, the typical length of the region of the fact that the effects of ion motion and moderate laser

of interest for field generation is about %8n only. In fact, intensity have been taken into account for our field genera-
one can modify our results by incorporating the effects oftion studies.

resonance layer and Landau damping. The electromagnetic mode ofpapolarized laser light can
be converted to the electrostatic mode at the critical density
IV. CONCLUDING REMARKS N., when its electric vector oscillates along the direction of

We have proposed here a mechanism of the simultaneoﬁ@e d_ensity gra(_jient. This_ effec_t is known as res_ona_lnce_ab-
generation of poloidal and toroidal magnetic fields in a one-SC"Ption[32] which also gives rise to the magnetic field in
temperaturdi.e., T,=T,=T), two-component, and nondissi- Plasmas9—11. We exclude such an effect in our calcula-
pative plasma. This mechanism originates from the transfor_t-'ons because our |_nterest is in calculating the magnetic fields
mation of kinetic energies of the ordered motion of chargedn underdense regions. o _
particles, in the presence of the wave, into the energy of the Kull [31] has shown that the mode conversion is possible
induced magnetic fields both in poloidal and in toroidal di-even in the underdense region if the thermal plasma is
rections. Such toroidal and poloidal fields are dc over the fageresent, and has also pointed out that the width of the con-
laser time scaléi.e., 2r/w). But for measuring such fields in version layer(here we call it a resonance layeplays an
a laboratory, the field should be dc for longer time scalesimportant role in such conversion. Thus, the amplitude of the
viz., laser pulse lengtfb ns, say or the hydrodynamic time electromagnetic mode of the laser light will be modified by
scale(=L/vy,;, whereL is the characteristic length ang; thermal plasma and, so, the linearized form of the electric
is the ion acoustic velocijy Even for such a longer time fields in Eq.(12) is justified for the region of our interest.
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the phase velocityy(,) of the radiation field and the density
(@ A (@m) ¢ ‘
scale length(L) of the plasma, respectively. The effect of
a plasma inhomogeneity may therefore be neglected.

Hence, assuming a typical value of the plasma tempera-
ture of 3 keV, the dimensionless amplitude of the electro-
static modeq; can be estimated quantitatively typically of
the order of 103, This leads us to conclude that about 3.8%
of the laser light would be converted to the electrostatic
mode in an underdense plasma having 3-keV temperature
(say. This is the main source of poloidal fieli30,31.

Our results have the consequences of the inverse Faraday
effect (IFB) [40] because in an IFE process the kinetic en-
ergy of the ordered motion of particles in the presence of an
electromagnetic wave is transformed into the energy of the
induced magnetic field. The field generation mechanism in

Log,,Mp (Gauss)

TS our study is a direct process due to the fact that, to calculate
-6 ! : induced magnetic fields, we have calculated the average non-
(b) o2 05 08 " linear angular momentum of electrons and ions via the non-
ALpm) linear electron and ion velocities and their displacements,
FIG. 4. (a) Variation of the logarithmic values of the toroidal whereas the IFE. s an ind?rect process of the field generation.
magnetic fields in gauss (lggM,) with the laser wavelengtf:) in Our mechanism is different from the dynamo effect

um at (N\/N.)=0.3, 7=5 ns, | = 105 W/cn?. (b) Variation of the [15,16 because our results, showing the simultaneous gen-
C N i) . . . . . .
logarithmic values of the poloidal magnetic fields in gausseratlon Of, toroidal and_polmdal m_agne_t'c fields, dP not pro-
(logioM ) with the laser wavelengti) in um at (N/Ng)=0.3, duce cyclically as toroidal to poloidal fields and vice versa.
7=5ns, | = 10 W/cn?. The temperature distribution of charge particles in plas-
mas is assumed to be unifortne., T,=T;=T) and so the

. . temperature gradient is absdhe., VT=0), hence the ther-
Further, it may also be noted that this model should have thg, Jalectric effect$1,23) are automatically suppressed in our

following three limitations. model.

(@ Let (v/w)(L/\g)=0.01 which gives Ax/\s<1, The electrostatic modé.e., the wake fielgigeneration in
where the width of the resonance layerAs[=(v/w)L],  an underdense plasma is also of current interest, with the
wherew is the collision frequency and is the density scale 54vent of ultrashort pulse lasers, because such fields play an
length. Hence, the phenomena which occur at the resonang@portant role in plasma-based accelerafdd. Such wake

layer have been ignored. fields are also important for the production of magnetic fields

(b) The inhomogeneity due to Landau damping has alsgy |aser-produced plasm#é1,47. All these will be studied
been ignored. Sinc&k\p<1, and k, /k;<1, where k;  g|sewhere.

(=koVel B) is the electrostatic wave numbér, (=Kov/e) is Uniform compression of a spherical target is one of the
the electromagnetic wave number, akg(=w/cC) is the  key issues for inertial confinement fusion. The coupling of
vacuum wave numbe[ = (vinet vi)/C~vime/C]<1, and  the self-induced magnetic fields with the transport processes
the 6{=1—[(w§e+ w,zji)/wz]~l—(w§e/w2)} is the dielec- may have serious effects on the heat flux, but this has not
tric constant. been investigated in detail because of its complexity. When
(c) The laser wavelengthi(s) is greater than the electro- the toroidal fields of the megagauss range were observed in
static wavelengthX.J, and also the thermal velociti¢sy,.  laser plasmas, it was realized that such toroidal fields en-
andvy,) and the Debye length\) are small compared with hance the lateral energy transpf24—29 but the axial en-
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ergy propagation due to the poloidal field was ignored. In
fact, the rate of energy deposition and inhibition in the con-
duction region due to poloidal fields is yet to be studied
thoroughly. Moreover, electrons and ions turn around the
toroidal and poloidal fields and get trapped in a layer of the
radius of the order of their Larmor radii. lon’s Larmor radius
is greater than that of the electron in the presence of a mag-
netic field. The strong toroidal fieltbf the order of several
megagaugsenhances lateral energy transport but degrades
axial energy transport which affects the implosion physics of

PHYSICAL REVIEW E 63 016404

ri3:|

c _ .
z) {K[Tuafe'li+Tifa? —B7) el 20—

2 2 i - 2 (20—
+Tig(ef + ) o€ ]+ Y[ Tyafa, &0~ 00
+T22(atf—ﬁf)aieieL-i-T%afaleigi]

N 2 i — 2 2 i
— i Tyof B, PN 0+ Toy(al — B7)B e

+Tya?B e} +c.c, (A2)

the ICF targef24—26. But the poloidal field, though weak, whereR;;=P11/Q11, R12=P12/Q12, R13=P13/Qus,

can trap both electrons and ions along the axis of the laser
beam. Ideally it is desirable that the rate of energy deposi-
tion, due to poloidal fields in conduction regions, should be

increased, thereby enhancing the energy transport from the

critical surface to the ablation surface. Hence, the energy
distribution in conduction regions due to toroidal and poloi-
dal fields are important. It may be speculated that the poloi-
dal field combined with the toroidal field set up by the laser
may lead to the formation of a magnetic cage which could be

used for plasma confinement such as a spheromak and also

for better thermal insulation in an inertial confinement
schemd43].
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APPENDIX A: FIRST-ORDER HARMONIC TERMS
CORRECT UP TO THIRD ORDER

Integrating Eqs(29) and(30) the expressions for the dis-
placements of the electron and ion can be written, by retain-
ing only first-order harmonic terms correct up to third order
[37,38, as in the following:

c . .
le3=lI —2w> {X[Ryjaje' i+ Ryy(af — B7)aye' 2=

2 2 j ~ 2 i _
+RlS(aL+ﬁi)01||e|9“]+y[R21a” ale'(ze\\ 0,)
+Ro @ — BT ) €% + Ryzafa, €]

i 7 2 i(20,— 2 2 i .
_|Z[R31aH Biel(Zﬂu 0,) 4 R32(a’i _BL)BLel(Z(JL 0,)

+Rgga?B, €] +c.c. (A1)

and
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+X[nf(V32) - 1]}

R21=P21/Q21, Rop=P2/Q2s, Ryz=P23/Qas,

P21=[Mcozi1], P2o=[Meoal,

Pos={peal NT— 1+ X1+ Xepia— Mel'31},

Qu=[NI—1+X+Xcl, Qu=[n>—1+X;+X],

Qus=[n% —1+X;+Xel,

R31=P31/Qs1, R3=P3,/Q3z5, Rzz=P33/Qz3.

P31=P21, P3=Pgy, Pgz=—Pys

Q31=Q21, Q3=Q22, Q33= Q3.

Also we have

T11=S11/L11, T1=Sip/lyp,  T13=Sia/las,

Sp={AI[NZ(V22) = 1+ Xe] + XiAer
+M;(o+ T[N (VA2 -1},
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Si={Ail(2n, —n)?(VE2) — 1+ X]+ XA,
+M;(oa+Top[(2n, —np2(VE2)— 1]},
S1a={Ais[Nf(VZ/2)— 1+ X]+XiAcs},
Lu={[nf(V?/2)— 1][nf(VZ2) — 1]+ X[ nf(ViI2) — 1]
+X[nf(VE2) - 11},
Li={[(2n, —n)A(V/2) - 1][(2n, —n)3(V3/2) — 1]
+ X (20, —n)A(Vi2)— 1]
+Xi[(2n, —n)A(VE2) - 1]},
Lia=Lq1,

To1=Su/Lo1,  Too=Sp/Lo, T232523/|—23,
S$;1=[Mjos1], Sp=[Mjoul,
Sps=[pia(NZ—1+Xe) + Xipes— M;T'q],

Loy=[nf=1+X+Xc], Lapp=[nT—1+Xi+Xe],

Los=[n% —1+X;+Xel,

T31=Sgi/la1, T3=Ssollsp,  Taz=Ssa/lss,
S51= 1, Seo=S0, Sz —Soss
L31=Lj1, Lgp=Lyp, Lgz=Los,

APPENDIX B: ELECTROSTATIC WAVE AND LANDAU
DAMPING (Ref. [31])

PHYSICAL REVIEW B3 016404

wi/wr<l and kllkr<1 (84)

Expanding Eq.(B2) about real frequency and real wave
number, and separating the real part and imaginary parts we
get

D,(w, ,k;)=0, (BS)
8wiD,(w,,kr)wi-i—&krDr(wr,k,)ki-l—Di(wr,kr)=0,
(B6)
where
2
. a)pe’i (aFe’i/ﬁU)
Di(w,k)=1 2( kZ) uok G 67

. wge,i (aFe,i(wr/kr))
Di(w,k)=—7% 2 o . (BY)

wherec is the Landau contour.
For the mode conversion analysis we take the frequency
as

(OF :O, (Bg)

and also assuming the distribution function is Maxwellian
then we have

fo=3—2t * Me, u° B10
eim = 2aKT.;) TP T 2kT., ) (B10)

By neglecting ion terms, which are small bg./m;, the
integral of Eq.(B7) may be evaluated explicitly for fluid
approximations as

D.—e_ Utzhekrz B11
It is a fact that the fluid description neglects Landau r—€ w2 (B11)
damping of an electrostatic wave in laser plasmas, but in the
Vlasov-Maxwell theory, it can be shown easily from the dis- 31
persion relation that the Landau damping exists outside the D;=3% 77/2)1’253’2exp< -3 ;), (B12)

resonance layerAx) and that the distance over which the

electrostatic wave freely propagates can be egtimatgd N Bhere Eq(B11) is the real dispersion relation which follows
reasonable order of magnitude. By taking the dispersion redirectly from Eq.(19) if the ion distribution is dropped, and

lation [44] in the following form: Eqg. (B12) gives the dispersion relation for an imaginary ef-

fect.
2
D(w,k)=1—-3 @peii (9Feilou) du=0, (B1) One then readily obtains the expression for the real wave
k2 u—wlk number as
all symbols have their usual meanings. Generally, B4, _ko\/z
relates complex number such that ky= Ve (B13

D(w,k)=D(w,k) +iDj(w,k), (B2)  and for the imaginary wave number as
where the subscriptsandi represent the real and imaginary
part of the dispersion relatiofB1), respectively. Let the

complex wave number and complex frequency be 1Equation(Bl) is similar to equation 8.3.1{44], if the electro-
static case only be retained, and the functiqy) is the integral of
the distribution function of ;; defined in Ref[44]. Moreover, Egs.
8.6.11 and 8.6.1244] may be expressed as Eq87) and (B8),

respectively, for reald,) and real k,).

k:kr+iki and wzwr-i-wi . (83)

Assuming the imaginary parts are small, i.e.,

016404-9
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-1 3 1)1
ki:_wpe\/f Clexg - =|| . (B19 f k.dz=(%)&2 (B17)
Veve 8|\e €
) 2, 2 Let n be the number of the electrostatic wavelength,
wherekg is the vacuum wave_,-length a1 — (wpd ). which can be expressed easily as
Therefore, the wave amplitude then decreases by the fac-
tor exp( ) where the damping argumeritis of the form n=(1/3m) &2 (B18)

The above equatiofB18) allows us to choose the number
‘I’Zf kidz. (B15  of electrostatic wavelength as=24 and consequently, we
have from Eq.(B17) that the effective region of Landau

For a linear profilee=z/L, we have the damping argument damping is approximately 24m for the linear profilee

as =0.25. Moreover, we also have the thickness of the reso-
nance layeAx=0.8um. So, the magnetic fields are calcu-
3 (koL 31 lated only on the region of typical length 5am. In other
¥= 7 A exXp -5 2l (B16) words, magnetic fields at the resonance layer and also at the

Landau damping region have not been included in our
which is to be a linear function ofkgL/V,) only when the present analysis. This should be done elsewhere. A rough
density is fixed. sketch has been given in Fig. 5 for understanding the region

Moreover, for the same profile we have the following:  of our interest in magnetic-field calculations.
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